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Selection of a staggered grid for inertia-gravity waves
in shallow water

J. M. Beckers∗;†

University of Li�ege; Sart-Tilman B5; B-4000 Li�ege; Belgium

SUMMARY

The problem of accuracy in propagating inertia-gravity waves on Arakawa grids is investigated. It is
shown that the sole analysis of spatial discretization and the recommendation of the B-grid for coarse
resolution models and C-grid for high resolution models must be re-analysed when time discretization
is taken into account as well. For a chosen time discretization, a coarse C-grid is shown for example, to
increase precision when using larger time-steps (up to the stability limit) whereas the precision of the
B-grid decreases. Here, an analysis of error for di�erent grids in function of the space–time resolutions
and computational costs is presented and some recommendations on the choice of the particular staggered
grid for a given application are outlined. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Inertia-gravity waves (e.g. Reference [1]) occur and participate in numerous processes: large-
scale atmospheric and oceanic motions reach geostrophic equilibrium balance by means of
transient inertia-gravity waves and the dynamics of tides and storm surges are dominated by
the propagation of external inertia-gravity waves, which are related to the evolution of the sea
surface. In strongly strati�ed seas, the displacement of density surfaces also leads to (internal)
inertia-gravity waves. Analytical studies (e.g. References [2–7]) of these processes are now
classical parts of textbooks on geophysical �uid dynamics because of their importance.
Numerical treatment of these waves was however simpli�ed in the past, due to limited

computing power. In small domains Coriolis e�ects were generally neglected, whereas large-
scale models neglected gravity waves.
Since the propagation of inertia-gravity waves is now also taken into account in modern

numerical models, it is of paramount importance that the numerical scheme utilized to simulate
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these waves, which are governed by the following equations, behaves properly:
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t is the time; u and v are the horizontal velocity components in Cartesian x and y directions,
respectively and � is the sea surface elevation. g is gravitational acceleration, f the constant
Coriolis frequency and h is the unperturbed sea depth, which we assume to be constant here.
The governing equations are generic equations, which can also be used to describe the internal
inertia-gravity waves, provided that one interprets �; u; v and h as equivalent quantities related
to the particular internal mode considered (e.g. Reference [8]).
Various discretized forms of Equations (1)–(3) have been examined [6; 9–13]. Generally,

such studies focus on space di�erencing aspects by arguing that the time step can be reduced
as much as need with a linear increase in cost, compared to a quadratic increase in cost for
an increase in spatial resolution. Furthermore, when time di�erencing is also considered, it
is customary to restrict the study to pure gravity waves (f=0) for the numerical stability
analysis. In this case, stability conditions and propagation properties of the numerical scheme
are readily obtained, but do not take into account geostrophic adjustments. Therefore it is
assumed here that the Coriolis parameter is di�erent from zero.
In the present work the focus will be on the problem of wave propagation in a fully

discretized situation as found in existing models [14], to verify, among other things, the
general statement that B-grids behave better at low resolutions and that C-grids behave better
at higher resolutions [15–18].
Only a two-level temporal discretization will be analysed and presented in Section 2 and

for which the numerical dispersion relationship is established. Errors in propagation properties
are then analysed in Section 3.

2. NUMERICAL SCHEME

As already shown by semi-discrete studies [12; 19], numerical propagation of Poincar�e and
Kelvin waves strongly depends on the distribution of u; v and � over grid points. Here,
only the four most widely mentioned numerical lattices are cited, namely the A, B, C and D
grids, according to Arakawa’s classi�cation [10] (Figures 1–4). Using the following standard
notations

ant ; nx ; ny = a(t; x; y)= a(nt�t; nx�x; ny�y) (4)

(�xa)nt ; nx ; ny =
ant ; nx+1=2; ny − ant ; nx−1=2; ny

�x
(5)

( �ax)nt ; nx ; ny =
ant ; nx+1=2; ny + ant ; nx−1=2; ny

2
(6)

the one-time step method schemes read for the di�erent grids:

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 38:729–746



SHALLOW WATER WAVES DISCRETIZATION 731

Figure 1. Arakawa A-Grid with positions of � points (•) and u and v points (♦) at the same location.

Figure 2. Arakawa B-Grid with positions of � points (•) in the centre of the grid box and
u and v points (♦) at the corners.

Figure 3. Arakawa C-Grid with positions of � points (•) in the centre of the grid box and
u (¿) and v points (∧) at the interfaces.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 38:729–746
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Figure 4. Arakawa D-Grid with positions of � points (•) in the centre of the grid box and
u (¿) and v points (∧) at the interfaces.

A-grid

(�t�)nt+1=2; nx ; ny + h[(�x �u
x)nt ; nx ; ny + (�y �v

y)nt ; nx ; ny ] = 0 (7)

(�tu)nt+1=2; nx ; ny − fvnt+s; nx ; ny =−g(�x ��x)nt+1; nx ; ny (8)

(�tv)nt+1=2; nx ; ny + funt+1−s; nx ; ny =−g(�y ��y)nt+1; nx ; ny (9)

B-grid

(�t�)nt+1=2; nx ; ny + h[(�x �u
y)nt ; nx ; ny + (�y �v

x)nt ; nx ; ny ] = 0 (10)

(�tu)nt+1=2; nx+1=2; ny+1=2 − fvnt+s; nx+1=2; ny+1=2 =−g(�x ��y)nt+1; nx+1=2; ny+1=2 (11)

(�tv)nt+1=2; nx+1=2; ny+1=2 + funt+1−s; nx+1=2; ny+1=2 =−g(�y ��x)nt+1; nx+1=2; ny+1=2 (12)

C-grid

(�t�)nt+1=2; nx ; ny + h[(�xu)nt ; nx ; ny + (�yv)nt ; nx ; ny ] = 0 (13)

(�tu)nt+1=2; nx+1=2; ny − f �vxynt+s; nx+1=2; ny =−g(�x�)nt+1; nx+1=2; ny (14)

(�tv)nt+1=2; nx ; ny+1=2 + f �u
xy
nt+1−s; nx ; ny+1=2 =−g(�y�)nt+1; nx ; ny+1=2 (15)

D-grid

(�t�)nt+1=2; nx ; ny + h[(�x �u
xy)nt ; nx ; ny + (�y �v

xy)nt ; nx ; ny ] = 0 (16)

(�tu)nt+1=2; nx ; ny+1=2 − f �vxynt+s; nx ; ny+1=2 =−g(�x ��xy)nt+1; nx ; ny+1=2 (17)

(�tv)nt+1=2; nx+1=2; ny + f �u
xy
nt+1−s; nx+1=2; ny =−g(�y ��xy)nt+1; nx+1=2; ny (18)

(For symmetry reasons, the switch s is zero for odd values of nt and one for even values).
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SHALLOW WATER WAVES DISCRETIZATION 733

Discretization thus uses the FBTCS (Forward Backward in Time, Centered in Space) tech-
nique so as to have an e�cient algorithm with as much implicit treatment as possible, with-
out having the need to solve linear systems. Centred space di�erencing is the same as in
Reference [10], whereas time stepping of the gravity wave part is similar to the forward–
backward scheme [20]. Coriolis terms are treated by an approach [21] which uses the ‘new
velocity’ only in one of the two velocity equations, so that one velocity component is com-
puted before the second one, which in turn uses the newly computed velocity value of the
other component. Another Coriolis discretization and stability conditions for a damped system
may be found in Reference [22].
The von Neumann stability analysis is now applied to the discretized equations by de�ning

a spatially periodic solution

(�; u; v)= (E(t);U(t);V(t))ei(kx x+kyy) =xnt e
i(nx2�x+ny 2�y) (19)

where �x and �y are linked to the wave numbers kx and ky by 062�x= kx�x6� and
062�y= ky�y6� and i2 =−1. The periodic solution (19) is then introduced into the system
of discretized equations; for all grids this leads to the expression

Asxnt+1 + Bsxnt =0; s=0; 1 (20)

from which one can compute the classical ampli�cation matrix H10 =A−1
1 B1A

−1
0 B0 and its

characteristic equation∗ det(H10 − �I)=0. Discretization constants appear in the following
combinations:

	=f�t (21)

(c2x ; c
2
y ) = gh

(
�t2

�x2
;
�t2

�y2

)
=R2	2

(
�t2

�x2
;
�t2

�y2

)
(22)

where we introduced the Rossby radius of deformation R=
√
ghf−1. In order to study the

e�ect of spatial resolution, it is useful to de�ne a parameter r which measures spatial grid
size compared to the Rossby radius of deformation:

r=
R√
�x�y

(23)

so that

(c2x ; c
2
y )= r

2	2
(
�;
1
�

)
(24)

where the parameter �=�y�x−1 is a measure of anistropy of the horizontal grid.
The characteristic equation reads [6]

(�− 1)(�2 − 2b�+ 1)=0 (25)

∗The same characteristic equation is obtained for the other possible de�nition of the ampli�cation matrix
H01 =A−1

0 B0A
−1
1 B1.
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734 J. M. BECKERS

Table I. De�nition of parameters involved in the stability analysis and dispersion
relation for A, B, C and D grids.

Grid �∗ � �x=c2x �y=c2y

A 4 1 sin2 2�x sin2 2�y
B 1 1 sin2 �x cos2 �y sin2 �y cos2 �x
C 1 | cos �x cos �y| sin2 �x sin2 �y
D 1 | cos �x cos �y| �2 sin2 �x �2 sin2 �y

where

b≡ 1− 8(�∗ − �)�
�2∗

− 2	2�2
[
4
�x�y
�2∗

+
(�∗ − 2�)
�∗

]
(26)

�= �x + �y (27)

The di�erent cases of A, B, C and D grids are given in Table I. From there, the stability
condition |b|61 can be translated into conditions on the discretization constants 	; cx; cy.
Furthermore, the ampli�cation factor � allows comparing the numerical propagation to the

physical dispersion relation, which is

(
!
f

)2
= 1 + (k2x + k

2
y )R

2 = 1 + 4(�2x + �
2
y )r

2 (28)

whereas the numerical dispersion relationship reads

!N =
arg �
2�t

(29)

The factor 2�t stems from the fact that a full cycle of temporal discretization consists in
two successive time-steps (nt even and nt odd) to take into account alternating treatments of
the Coriolis term. Since �= b± i√1− b2; !N is readily calculated and allows assessing the
numerical propagation properties of the schemes:

(
!N

f

)2
=
�2

4	2
; cos �= b (30)

For small time-steps (	→ 0; r �xed),

b∼ 1− 8r2	2

�∗
(��xc−2x + �−1�yc−2y )− 2	2�2 (31)

so that

(
!N

f

)2
=

1
4	2

(arcos b)2∼ 1
4	2

2(1− b)∼ 4r
2

�∗
(��xc−2x + �−1�yc−2y ) + �2 (32)
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Table II. Stability limits of A, B, C and D grids.

Grid c2lim

A 2
(2− |	| − 	2)

4− 	2

B
(1− 	2)

2

C
1
4

D minz∈ [0; 1]

[
(1− z|	|)

2z2(1− z)(2− z|	|)
]

By using the de�nitions of Table I, one retrieves the classical dispersion relationship of the
semi-discrete case [12].† If in addition �x→ 0; �y→ 0, this can be further developed in
terms of small �x; �y, and in this case one retrieves the physical dispersion relationship (28),
indicating that a consistent discretization has been used.
The numerical propagation properties of the fully discretized scheme can now be compared

to the physical continuous wave propagation.

3. NUMERICAL PROPAGATION PROPERTIES

In the following, the study will be limited to the case where �=1. On the one hand, assuming
an anisotropic grid leads to cumbersome stability criteria [23] and on the other hand, for an
analysis of the wave propagation error (which we would like to keep as low as possible), it
would seem strange to allow strongly anisotropic grids. In any case, most studies of spatial
discretization error already restrict the analysis to this case. Therefore an analysis of the
additional e�ects of temporal discretizations will be coherent with previous studies. Should
one want to calculate errors in the case of an anisotropic or 1D grid, the previous general
calculations remain valid and could be used to assess the e�ect of anisotropy.
In the isotropic case, cx= cy= c, and the necessary and su�cient stability conditions read

	26 1 (33)

c26 c2lim (34)

where clim is given in Table II for each grid. To characterize error in the propagation, one
generally analyses the relative error 	 de�ned by

	=
!N −!
!

(35)

†By observing that 1− cos 2�x cos 2�y =2(sin2 �x cos2 �y + sin2 �y cos2 �x).
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and an average error �	

�	2≡ 1
�2∗

∫ �∗

0

∫ �∗

0
	2 d�x d�y (36)

Since grid noise is usually �ltered out and because errors are only analysed for smaller wave
numbers, authors generally disregard waves whose wave number is higher than �∗=�=4.
Another property is group velocity C=Cxex + Cyey:

Cx=
@!
@kx

=
�x
2
@!
@�x
; Cy=

@!
@ky

=
�y
2
@!
@�y

(37)

and its numerical counterpart CN =CNx ex + CNy ey

CNx =
@!N

@kx
=
�x
2
f
2	

@�
@�x
; CNy =

@!N

@ky
=
�y
2
f
2	

@�
@�y

(38)

With these, we can calculate an error norm for group velocity:

	g=
‖CN‖ − ‖C‖

‖C‖ (39)

For extremely small time-steps, we recover the known results and conclusions for the choice
of the B or C-grid depending on whether the radius of deformation is well resolved (r¿1)
or not. Indeed, Figure 5 at the marginal resolution r=1 in function of the wavelength shows
a similar average error for B and C-grids and higher errors for the A and D-grids. Figure 6
shows the corresponding error on group velocity. For medium resolution, classical results are
retrieved, showing for very small time-steps the more uniform behaviour of the C-grid for all
wavelengths and large errors for higher wave numbers in the other grids. Figure 7 is typical
for results used to justify the recommendation of the B-grid for coarse resolutions, since as
shown, for small values of r, the errors for a speci�c wave (�x= �y) are lower than for the
C-grid for all well resolved wavelength.
One can now verify if this conclusion holds for larger time-steps.
For medium size time-steps (	=0:3), the phase speed error (Figure 8) for the medium

resolution indicates a slight increase in errors for the B-grid and a decrease for the C-grid.
This also holds for group velocity (not shown). In order to quantify the errors in terms of
spatial and temporal resolution, average errors (averages on the wavelength of Equation (36))
are now used and contoured in the (r; 
) space. This is done in Figure 9, and it is readily
seen that A and B-grids actually increase their average errors for higher resolutions, whereas
the C-grid decreases its error for higher resolutions. In order to have a better quantitative
comparison, a look at Figures 10 and 11 shows the average errors for the di�erent grids
in function of the temporal resolution for di�erent spatial resolutions. It is readily seen that
indeed, for smaller time-steps, the B-grid has an advantage over the C-grid and that the D-grid
performs poorly (as expected). On the other hand, one can clearly observe that the C-grid
increases its precision for increased time-steps at lower resolutions, whereas the B-grid error
increases, so that there exists a time-step at which both grids have an identical average error.
For larger time steps the C-grid performs even better. When higher resolutions are considered,
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SHALLOW WATER WAVES DISCRETIZATION 737

Figure 5. Relative error 	 (r=1;	=10−4) for A grid (upper left panel), B grid (upper right panel),
C grid (lower left panel) and D grid (lower right panel), in function of �x; �y. Grey level scales

indicate values from −0:33 (black) to 0.33 (white).

the e�ect of changing the time-step is less marked and similar for all grids, so that a grid
which performs better at a higher spatial resolution maintains its advantage when changing
the time-step (up to the stability limit). Therefore, one could conclude that the C-grid could
reach the same precision as the B-grid when the time-step is increased towards the stability
limit, something one is tempted to do in most models in order to reduce computational costs.
However, instead of decreasing the time-resolution to decrease computational costs, one could
also decide to reduce the spatial resolution and to keep a �ner time-step (especially for the
B-grid of course).
Therefore, when comparing schemes and possible choices of resolutions in both spatial and

temporal domains, the concept of computational cost should be included in the discussion. To
do so, one can consider that a system with a �xed spatial domain and a given time interval

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 38:729–746
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Figure 6. Relative error 	G of group velocity (r=1;	=10−4) for A grid (upper left panel), B grid
(upper right panel), C grid (lower left panel) and D grid (lower right panel), in function of �x; �y.

Grey level scales indicate values from −0:66 (black) to 0.66 (white).

is simulated, in which case the total number of operations N is given by

N =�r2=	 (40)

where � is a constant parameter depending on the size of the domain and the simulated real
time. This means that a curve of constant cost is given by

log(	)=2 log(r) + C (41)

For large values of C, the scheme is on the low resolution and economic side, whereas for
small values of C a high resolution and costly discretization is chosen.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 38:729–746
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Figure 7. Relative error 	, (	=10−4) for A grid (upper left panel), B grid (upper right panel),
C grid (lower left panel) and D grid (lower right panel), in function of �x and log(r) (�y= �x)

Grey level scales indicate values from −0:33 (black) to 0.33 (white).

When comparing schemes for constant cost, one must bear in mind that if spatial resolution
is increased, smaller wavelengths are resolved. These waves should however not be taken into
account for the comparison, since the question to be solved is the following: assuming that
one wants to resolve wavelength down to �=R�, where � is a �xed parameter, and that one
will keep the computational cost constant, should one use an increased resolution in space or
in time? Then the criteria of choice is the average error of the propagation scheme for waves
with wavelengths larger than �, even if the grid chosen allows to resolve �ner scales.
De�nitively, once one has decided that the smallest wavelength of interest if �, one should

have a spatial resolution which at least corresponds to �∗=�=4=��x�−1 if one does, as
usual, consider that the numerical grid does not correctly represent small scale waves above
kx�x=�=2. This means that one should have r�¿4. For computation of the average error,
one must then limit the integration of Equation (36) corresponding to the wavelength �, which

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 38:729–746
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Figure 8. Relative error 	 (r=1;	=0:3) for A grid (upper left panel), B grid (upper right
panel), C grid (lower left panel) and D grid (lower right panel), in function of �x; �y. Grey level

scales indicate values from −0:33 (black) to 0.33 (white).

gives

�∗=
�
4
4
r�

(42)

One can then compare schemes which resolve well the radius of deformation (��1),
marginally resolve it (�∼ 1), or do not resolve it (��1). Concerning computational cost,
if one wants to be able to use larger time steps when increasing spatial resolution, to keep
computational cost constant, we must take

log(	)=2 log(r) + log(	0)− 2 log(r0) (43)

where 	0 and r0 are such that the lowest possible spatial resolution r0 = 4�−1 has a time-
stepping that is well below the stability limit (otherwise there would be no possibility of

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 38:729–746



SHALLOW WATER WAVES DISCRETIZATION 741

Figure 9. Average �	, for A grid (upper left panel), B grid (upper right panel), C grid (lower
left panel) and D grid (lower right panel), in function of log(r) and (1 + log(	)). Grey

level scales indicate values from 0 (black) to 0.3 (white).

Figure 10. Average error �	, for A grid (continous line), B grid (�ne grain dashed line), C grid (medium
grain dashed line) and D grid (coarse grain dashed line), in function of 1 + log(	). Coarser resolution

r=0:5 (left), medium resolution r=1 (middle) and higher resolution r=2 (right).

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 38:729–746
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Figure 11. Average error �	, for A grid (continuous line), B grid (�ne grain dashed line), C grid
(medium grain dashed line) and D grid (coarse grain dashed line), in function of 1 + log(	).

Very coarse resolution r=0:1 (left), and very high resolution r=10 (right).

Figure 12. Average �	, for A grid (full line), B grid (�ne dash line), C grid (medium dashed
line) and D grid (large dashed lines), in function of log(r) for constant cost. �=10 (left),

�=1 (middle) and �=0:1 (right).

increasing spatial resolution at constant cost). Here,

	20 =




+ r20
(44)

was chosen, with 
=0:02, which corresponds to c2 =
(1−	2).
By comparing the grids used in cases for unresolved radius, marginally resolved and well

resolved (Figure 12), one observes that at constant cost, the C-grid can be made almost as
precise as the B-grid, even for large-scale models, but with an increased spatial resolution
compared to the B-grid. In this case the time-stepping of the B-grid is �ner. For the other
cases, the C-grid always performs better than the B-grid.

4. SEMI-IMPLICIT SCHEMES

Since it was shown that on the C-grid, a larger time-step can actually decrease propagation
error, it might be interesting to investigate implicit or semi-implicit schemes, since they are not
limited by a stability condition. Then maybe an even increased time step (at an increased cost
for solving a linear system) could reduce the error even more or maintain it at an acceptable
level.
To analyse this possibility, only the C-grid is investigated, as it is the most promising

candidate. When turning towards an implicit scheme, one loses the advantage of the previous
scheme that does not need to solve any linear system, since the algorithmic calculations

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 38:729–746
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are explicit. When using the semi-implicit or implicit scheme, one could then also treat the
Coriolis term with a classical implicit discretization, rather than with the Siliecki approach
used up to now.
For comparison with the previous analysis, both approaches will be investigated. Then

remains the choice of a fully implicit, semi-implicit or any other weighting.
The only implicit scheme on gravity wave components that does not damp waves is the

trapezoidal (or semi-implicit) scheme. The fully implicit scheme damps the waves and would
introduce additional errors. Here only undamped waves are considered. Should damping be
necessary for some reason, an explicitly introduced di�usion would allow a better control of
the damping.
If one uses a classical semi-implicit scheme on the pressure gradient and velocity diver-

gence, ampli�cation factors can be calculated readily.
In the case where the Coriolis discretization is done as before, one �nds with the same

notations as before

b=1+ 2
	2�2(�− 1)− 4�
(�+ 1)2 − �2	2�x�y (45)

For the full trapezoidal or fully semi-implicit scheme, also on Coriolis term,‡ one �nds

b=− 1 + 2
(
�2	2 + 4�− 4
�2	2 + 4�+ 4

)2
(46)

and one sees that the scheme is unconditionally stable and not damping.
Once the ampli�cation factor is known, one can redo the error analysis and compare it with

the previous explicit approach.
Figure 13 show the errors for the C-grid semi-implicit scheme with the two choices for

Coriolis treatment.
Comparing with Figure 9 shows that for small time steps, errors are similar; when looking

at the error in the region where the explicit scheme is unstable (upper right white triangle in
contour plot of C-grid error), one can clearly see that the error for the semi-implicit scheme
rapidly increases when going far beyond the CFL stability limit of the explicit scheme, a
typical behaviour of semi-implicit schemes [24]. For clarity, in Figure 13, on the right part,
the scale was changed by a factor 3.
Di�erences between the treatment of Coriolis term remain weak except near 	=1, as one

should expect.
Since the semi-implicit scheme is much more expensive per time-step than explicit schemes,

it is only interesting to use it if one does not need an accurate propagation of the waves and
can use time steps well beyond the CFL limit. Otherwise, an explicit scheme near the CFL
limit behaves just as well as the implicit scheme at lower cost, but reduced robustness.

‡For the fully trapezoidal scheme, a single time-step analysis is in principle possible, but for a coherent presentation
the ampli�cation factor is still calculated over two successive time-steps.
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Figure 13. Average �	, for C grid with Sielecki and semi implicit scheme above (left normal scale,
right 	=3). Below fully semi-implicit scheme. Error in function of log(r) and (1 + log(	)). Grey

level scales indicate values from 0 (black) to 0.3 (white).

5. DISCUSSION

Di�erences between B and C grid representations of inertia-gravity waves decrease when
larger time steps are used at coarse resolutions, whereas previous authors have argued that
a B grid should be used. Since most of the time, the largest possible time-step is used,
the argument based on analysing the purely spatial discretization error may thus be
misleading.
It was shown here that C-grid errors are always reduced when using the largest possible

time-stepping, whereas B-grid errors are reduced by using small time-steps at low resolutions
and larger time-steps at �ner spatial resolutions.
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Based on the error analysis of the present paper, the following recommendations can be
made:

(i) At low spatial resolutions and �ne temporal resolutions, the B-grid would be the best
choice. Any additional CPU resources should then be used to decrease the time step.

(ii) At high spatial resolutions, the C-grid should always be preferred and be used with a
time-step near the CFL limit. Additional resources should then be spent on increasing
spatial resolution.

(iii) In other cases, the C-grid should be preferred if the time-step can be chosen near the
CFL limit.

(iv) Semi-implicit schemes for the C-grid are only interesting if a very robust scheme is
necessary or if one is not interested in the correct propagation of waves.

The particular results presented here certainly depend upon the speci�c time-discretization
chosen, but even if the results cannot be immediately transposed to other time-discretizations
(like the commonly used leapfrog method), or situations with rapid variations in depth h, they
suggest, at least, that one should more closely look at the time-discretization e�ects before
judging that a given spatial grid is better suited for a given situation. The fact that most of the
time, the largest allowable time-step is used in real numerical simulations, reinforces the need
for such an analysis, as the general argument that the time step can be reduced as desired is
never met in practise.
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